Nanoparticles engineered to bind cellular motors for efficient delivery
نویسندگان
چکیده
منابع مشابه
Nanoparticles engineered to bind cellular motors for efficient delivery
BACKGROUND Dynein is a cytoskeletal molecular motor protein that transports cellular cargoes along microtubules. Biomimetic synthetic peptides designed to bind dynein have been shown to acquire dynamic properties such as cell accumulation and active intra- and inter-cellular motion through cell-to-cell contacts and projections to distant cells. On the basis of these properties dynein-binding pe...
متن کاملNanoparticles in cellular drug delivery.
This review highlights the properties of nanoparticles used in targeted drug delivery, including delivery to cells as well as organelle targets, some of the known pharmacokinetic properties of nanoparticles, and their typical modifications to allow for therapeutic delivery. Nanoparticles exploit biological pathways to achieve payload delivery to cellular and intracellular targets, including tra...
متن کاملEngineered Human Ferritin Nanoparticles for Direct Delivery of Tumor Antigens to Lymph Node and Cancer Immunotherapy
Efficient delivery of tumor-specific antigens (TSAs) to lymph nodes (LNs) is essential to eliciting robust immune response for cancer immunotherapy but still remains unsolved. Herein, we evaluated the direct LN-targeting performance of four different protein nanoparticles with different size, shape, and origin [Escherichia coli DNA binding protein (DPS), Thermoplasma acidophilum proteasome (PTS...
متن کاملCellular motors for molecular manufacturing.
Cells are composed of macromolecular structures of various sizes that act individually or collectively to maintain their viability and perform their function within the organism. This review focuses on one structure, the microtubule, and one of the motor proteins that move along it, conventional kinesin (kinesin 1). Recent work on the cellular functions of kinesins, such as the organization of ...
متن کاملDevelopment of viral nanoparticles for efficient intracellular delivery.
Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nanobiotechnology
سال: 2018
ISSN: 1477-3155
DOI: 10.1186/s12951-018-0354-1